Using Phenomena to Drive K-12 Science Inquiry
Phenomena are observable events. Engaging ones stimulate curiosity and drive scientific inquiry. For example, beginning a lesson with one is an effective Engage strategy when using the evidence-based 5E Instructional Model.
Each phenomenon listed below is aligned to a NGSS Disciplinary Core Idea (DCI) and Performance Expectation (PE: what students are expected to be able to do) by grade level. They link to lesson plans, videos, captivating images, activities, and other resources designed to help you meet the DCI and the other components of the 3 Dimensions of the NGSS: Science and Engineering Practices (SEPs) and Crosscutting Concepts (CCs). Please note that the phenomena and lesson plans can often be used to meet multiple standards.
We encourage you to think of ways to integrate environmental education and Earth science with the other sciences and content areas. Click here for new BAESI lessons plans that link Earth science with life science and physical science. They incorporate phenomena to engage students and help teach climate change concepts.
Explore amazing phenomena for:
- High School Earth and Space Science
- High School Life Science
- High School Physical Science
- Middle School Earth and Space Science
- Middle School Life Science
- Middle School Physical Science
- Grade 5 Science
- Grade 4 Science
- Grade 3 Science
- Grade 2
- Grade 1
- Kindergarten
High School Earth and Space Science
- HS-ESS1-1: Earth’s Place in the Universe (Space Systems)
“Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun’s core to release energy that eventually reaches Earth in the form of radiation.” [Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun’s core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun’s radiation varies due to sudden solar flares (“space weather”), the 11-year sunspot cycle, and non-cyclic variations over centuries.] [Assessment Boundary: Assessment does not include details of the atomic and sub-atomic processes involved with the sun’s nuclear fusion.] - HS-ESS1-2: Earth’s Place in the Universe
“Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.” [Emphasis is on the astronomical evidence of the red shift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).] - HS-ESS1-3: Earth’s Place in the Universe
“Communicate scientific ideas about the way stars, over their life cycle, produce elements.” [Emphasis is on the way nucleosynthesis, and therefore the different elements created, varies as a function of the mass of a star and the stage of its lifetime.] [Assessment Boundary: Details of the many different nucleosynthesis pathways for stars of differing masses are not assessed.] - HS-ESS1-4: Earth’s Place in the Universe
“Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.” [Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.] - HS-ESS1-5: Earth’s Place in the Universe
“Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.” [Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core of the continental plate (a result of past plate interactions).] - HS-ESS1-6: Earth’s Place in the Universe
“Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth’s formation and early history.” [Emphasis is on using available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago. Examples of evidence include the absolute ages of ancient materials (obtained by radiometric dating of meteorites, moon rocks, and Earth’s oldest minerals), the sizes and compositions of solar system objects, and the impact cratering record of planetary surfaces.] - HS-ESS2-1: Earth’s Systems
“Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.” [Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.] - HS-ESS2-2: Earth’s Systems
“Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems.” [Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]- Feedback in Earth’s Systems
- Induced seismicity (video; human-caused earthquakes): fracking, drilling, mining, etc.
- Man-made Earthquakes: Fact or Fiction? (video)
- Feedback in Earth’s Systems
- HS-ESS2-3: Earth’s Systems
“Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection.” [Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.] - HS-ESS2-4: Earth’s Systems
“Use a model to describe how variations in the flow of energy into and out of Earth’s systems result in changes in climate.” [Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth’s orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.] [Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.] - HS-ESS2-5: Earth’s Systems
“Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.” [Emphasis is on mechanical and chemical investigations with water and a variety of solid materials to provide the evidence for connections between the hydrologic cycle and system interactions commonly known as the rock cycle. Examples of mechanical investigations include stream transportation and deposition using a stream table, erosion using variations in soil moisture content, or frost wedging by the expansion of water as it freezes. Examples of chemical investigations include chemical weathering and recrystallization (by testing the solubility of different materials) or melt generation (by examining how water lowers the melting temperature of most solids).] - HS-ESS2-6: Earth’s Systems
“Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.” [Emphasis is on modeling biogeochemical cycles that include the cycling of carbon through the ocean, atmosphere, soil, and biosphere (including humans), providing the foundation for living organisms.]- Carbon Cycling in Earth’s Systems
- Terraforming Mars
- Carbon Travels—Then and Now (BAESI lesson that integrates biology, chemistry, physics, and ecology with Earth science)
- Carbon Cycling in Earth’s Systems
- HS-ESS2-7: Earth’s Systems
“Construct an argument based on evidence about the simultaneous coevolution of Earth’s systems and life on Earth.” [Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth’s other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth’s surface. Examples include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.] [Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth’s other systems.] - HS-ESS3-1: Earth and Human Activity
“Construct an explanation based on evidence for how the availability of natural resources, occurrence of natural hazards, and changes in climate have influenced human activity.” [Examples of key natural resources include access to fresh water (such as rivers, lakes, and groundwater), regions of fertile soils such as river deltas, and high concentrations of minerals and fossil fuels. Examples of natural hazards can be from interior processes (such as volcanic eruptions and earthquakes), surface processes (such as tsunamis, mass wasting and soil erosion), and severe weather (such as hurricanes, floods, and droughts). Examples of the results of changes in climate that can affect populations or drive mass migrations include changes to sea level, regional patterns of temperature and precipitation, and the types of crops and livestock that can be raised.] - HS-ESS3-2: Earth and Human Activity
“Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.” [Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen.] - HS-ESS3-3: Earth and Human Activity
“Create a computational simulation to illustrate the relationships among the management of natural resources, the sustainability of human populations, and biodiversity.” [Examples of factors that affect the management of natural resources include costs of resource extraction and waste management, per-capita consumption, and the development of new technologies. Examples of factors that affect human sustainability include agricultural efficiency, levels of conservation, and urban planning.] [Assessment Boundary: Assessment for computational simulations is limited to using provided multi-parameter programs or constructing simplified spreadsheet calculations.] - HS-ESS3-4: Earth and Human Activity
“Evaluate or refine a technological solution that reduces impacts of human activities on natural systems.” [Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean).] - HS-ESS3-5: Earth and Human Activity
“Analyze geoscience data and the results from global climate models to make an evidence-based forecast of the current rate of global or regional climate change and associated future impacts to Earth’s systems.” [Examples of evidence, for both data and climate model outputs, are for climate changes (such as precipitation and temperature) and their associated impacts (such as on sea level, glacial ice volumes, or atmosphere and ocean composition).] [Assessment Boundary: Assessment is limited to one example of a climate change and its associated impacts.] - HS-ESS3-6: Earth and Human Activity
“Use a computational representation to illustrate the relationships among Earth systems and how those relationships are being modified due to human activity.” [Examples of Earth systems to be considered are the hydrosphere, atmosphere, cryosphere, geosphere, and/or biosphere. An example of the far-reaching impacts from a human activity is how an increase in atmospheric carbon dioxide results in an increase in photosynthetic biomass on land and an increase in ocean acidification, with resulting impacts on sea organism health and marine populations.] [Assessment Boundary: Assessment does not include running computational representations but is limited to using the published results of scientific computational models.]
Middle School Earth and Space Science
- MS-ESS1-1: Earth’s Place in the Universe
“Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.” [Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] - MS-ESS1-2: Earth’s Place in the Universe
“Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.” [Emphasis for the model is on gravity as the force that holds together the solar system and Milky Way galaxy and controls orbital motions within them. Examples of models can be physical (such as the analogy of distance along a football field or computer visualizations of elliptical orbits) or conceptual (such as mathematical proportions relative to the size of familiar objects such as students’ school or state).] [Assessment Boundary: Assessment does not include Kepler’s Laws of orbital motion or the apparent retrograde motion of the planets as viewed from Earth.] - MS-ESS1-3: Earth’s Place in the Universe
“Analyze and interpret data to determine scale properties of objects in the solar system.” [Emphasis is on the analysis of data from Earth-based instruments, space-based telescopes, and spacecraft to determine similarities and differences among solar system objects. Examples of scale properties include the sizes of an object’s layers (such as crust and atmosphere), surface features (such as volcanoes), and orbital radius. Examples of data include statistical information, drawings and photographs, and models.] [Assessment Boundary: Assessment does not include recalling facts about properties of the planets and other solar system bodies.] - MS-ESS1-4: Earth’s Place in the Universe
“Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.” [Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth’s history. Examples of Earth’s major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.] [Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.] - MS-ESS2-1: Earth’s Systems
“Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.” [Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth’s materials.] [Assessment Boundary: Assessment does not include the identification and naming of minerals.] - MS-ESS2-2: Earth’s Systems
“Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.” [Emphasis is on how processes change Earth’s surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.] - MS-ESS2-3: Earth’s Systems
“Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.” [Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).] [Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.] - MS-ESS2-4: Earth’s Systems
“Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.” [Emphasis is on the ways water changes its state as it moves through the multiple pathways of the hydrologic cycle. Examples of models can be conceptual or physical.] [Assessment Boundary: A quantitative understanding of the latent heats of vaporization and fusion is not assessed.] - MS-ESS2-5: Earth’s Systems
“Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.” [Emphasis is on how air masses flow from regions of high pressure to low pressure, causing weather (defined by temperature, pressure, humidity, precipitation, and wind) at a fixed location to change over time, and how sudden changes in weather can result when different air masses collide. Emphasis is on how weather can be predicted within probabilistic ranges. Examples of data can be provided to students (such as weather maps, diagrams, and visualizations) or obtained through laboratory experiments (such as with condensation).] [Assessment Boundary: Assessment does not include recalling the names of cloud types or weather symbols used on weather maps or the reported diagrams from weather stations.] - MS-ESS2-6: Earth’s Systems
“Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.” [Emphasis is on how patterns vary by latitude, altitude, and geographic land distribution. Emphasis of atmospheric circulation is on the sunlight-driven latitudinal banding, the Coriolis effect, and resulting prevailing winds; emphasis of ocean circulation is on the transfer of heat by the global ocean convection cycle, which is constrained by the Coriolis effect and the outlines of continents. Examples of models can be diagrams, maps and globes, or digital representations.] [Assessment Boundary: Assessment does not include the dynamics of the Coriolis effect.] - MS-ESS3-1: Earth and Human Activity
“Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.” [Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).] - MS-ESS3-2: Earth and Human Activity
“Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.” [Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and with no notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).] - MS-ESS3-3: Earth and Human Activity
“Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.” [Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).] - MS-ESS3-4: Earth and Human Activity
“Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.” [Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth’s systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.] - MS-ESS3-5: Earth and Human Activity
“Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.” [Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.]
High School Life Science
- HS-LS1-1: From Molecules to Organisms: Structures and Processes
“Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins, which carry out the essential functions of life through systems of specialized cells.” [Assessment Boundary: Assessment does not include identification of specific cell or tissue types, whole body systems, specific protein structures and functions, or the biochemistry of protein synthesis.] - HS-LS1-2: From Molecules to Organisms: Structures and Processes
“Develop and use a model to illustrate the hierarchical organization of interacting systems that provide specific functions within multicellular organisms.” [Emphasis is on functions at the organism system level such as nutrient uptake, water delivery, and organism movement in response to neural stimuli. An example of an interacting system could be an artery depending on the proper function of elastic tissue and smooth muscle to regulate and deliver the proper amount of blood within the circulatory system.] [Assessment Boundary: Assessment does not include interactions and functions at the molecular or chemical reaction level.] - HS-LS1-3: From Molecules to Organisms: Structures and Processes
“Plan and conduct an investigation to provide evidence that feedback mechanisms maintain homeostasis.” [Examples of investigations could include heart rate response to exercise, stomate response to moisture and temperature, and root development in response to water levels.] [Assessment Boundary: Assessment does not include the cellular processes involved in the feedback mechanism.] - HS-LS1-4: From Molecules to Organisms: Structures and Processes
“Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.” [Assessment Boundary: Assessment does not include specific gene control mechanisms or rote memorization of the steps of mitosis.] - HS-LS1-5: From Molecules to Organisms: Structures and Processes
“Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.” [Emphasis is on illustrating inputs and outputs of matter and the transfer and transformation of energy in photosynthesis by plants and other photosynthesizing organisms. Examples of models could include diagrams, chemical equations, and conceptual models.] [Assessment Boundary: Assessment does not include specific biochemical steps.] - HS-LS1-6: From Molecules to Organisms: Structures and Processes
“Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules.” [Emphasis is on using evidence from models and simulations to support explanations.] [Assessment Boundary: Assessment does not include the details of the specific chemical reactions or identification of macromolecules.] - HS-LS1-7: From Molecules to Organisms: Structures and Processes
“Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy.” [Emphasis is on the conceptual understanding of the inputs and outputs of the process of cellular respiration.] [Assessment Boundary: Assessment should not include identification of the steps or specific processes involved in cellular respiration.] - HS-LS2-1: Ecosystems: Interactions, Energy, and Dynamics
“Use mathematical and/or computational representations to support explanations of factors that affect carrying capacity of ecosystems at different scales.” [Emphasis is on quantitative analysis and comparison of the relationships among interdependent factors including boundaries, resources, climate, and competition. Examples of mathematical comparisons could include graphs, charts, histograms, and population changes gathered from simulations or historical data sets.] [Assessment Boundary: Assessment does not include deriving mathematical equations to make comparisons.]- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Carrying Capacity of Ecosystems
- A Royale Mystery (video)
- HS-LS2-2: Ecosystems: Interactions, Energy, and Dynamics
“Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.” [Examples of mathematical representations include finding the average, determining trends, and using graphical comparisons of multiple sets of data.] [Assessment Boundary: Assessment is limited to provided data.]- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Biodiversity and Populations in Ecosystems
- Megafauna Extinction: Humans or Climate?
- Attack Of The Killer Fungi
- HS-LS2-3: Ecosystems: Interactions, Energy, and Dynamics
“Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.” [Emphasis is on conceptual understanding of the role of aerobic and anaerobic respiration in different environments.] [Assessment Boundary: Assessment does not include the specific chemical processes of either aerobic or anaerobic respiration.]- Aerobic and Anaerobic Cycling of Matter
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Ecosphere Sealed for Over 50 Years
- If We Are What We Eat, Americans Are Corn and Soy
- Reconstructing Ancient Diets with Isotopes
- Biosphere 2
- Attack Of The Killer Fungi
- Algae Fuel and Food
- Vegetable Oil as Fuel
- Farming Fish with Vegetables
- 12 Years in a Sealed Ecosphere
- Aerobic and Anaerobic Cycling of Matter
- HS-LS2-4: Ecosystems: Interactions, Energy, and Dynamics
“Use mathematical representations to support claims for the cycling of matter and flow of energy among organisms in an ecosystem.” [Emphasis is on using a mathematical model of stored energy in biomass to describe the transfer of energy from one trophic level to another and that matter and energy are conserved as matter cycles and energy flows through ecosystems. Emphasis is on atoms and molecules such as carbon, oxygen, hydrogen and nitrogen being conserved as they move through an ecosystem.] [Assessment Boundary: Assessment is limited to proportional reasoning to describe the cycling of matter and flow of energy.]- Biomass and Trophic Levels
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- If We Are What We Eat, Americans Are Corn and Soy
- Reconstructing Ancient Diets with Isotopes
- Biosphere 2
- Attack Of The Killer Fungi
- 12 Years in a Sealed Ecosphere
- Farming Fish with Vegetables
- Ecosphere Sealed for Over 50 Years
- Biomass and Trophic Levels
- HS-LS2-5: Ecosystems: Interactions, Energy, and Dynamics
“Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.” [Examples of models could include simulations and mathematical models.] [Assessment Boundary: Assessment does not include the specific chemical steps of photosynthesis and respiration.] - HS-LS2-6: Ecosystems: Interactions, Energy, and Dynamics
“Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem.” [Examples of changes in ecosystem conditions could include modest biological or physical changes, such as moderate hunting or a seasonal flood; and extreme changes, such as volcanic eruption or sea level rise.] - HS-LS2-7: Ecosystems: Interactions, Energy, and Dynamics
“Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.” [Examples of human activities can include urbanization, building dams, and dissemination of invasive species.] - HS-LS2-8: Ecosystems: Interactions, Energy, and Dynamics
“Evaluate evidence for the role of group behavior on individual and species’ chances to survive and reproduce.” [Emphasis is on: (1) distinguishing between group and individual behavior, (2) identifying evidence supporting the outcomes of group behavior, and (3) developing logical and reasonable arguments based on evidence. Examples of group behaviors could include flocking, schooling, herding, and cooperative behaviors such as hunting, migrating, and swarming.] - HS-LS3-1: Heredity: Inheritance and Variation of Traits
“Ask questions to clarify relationships about the role of DNA and chromosomes in coding the instructions for characteristic traits passed from parents to offspring.” [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.] - HS-LS3-2: Heredity: Inheritance and Variation of Traits
“Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.” [Emphasis is on using data to support arguments for the way variation occurs.] [Assessment Boundary: Assessment does not include the phases of meiosis or the biochemical mechanism of specific steps in the process.] - HS-LS3-3: Heredity: Inheritance and Variation of Traits
“Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.” [Emphasis is on the use of mathematics to describe the probability of traits as it relates to genetic and environmental factors in the expression of traits.] [Assessment Boundary: Assessment does not include Hardy-Weinberg calculations.] - HS-LS4-1: Biological Evolution: Unity and Diversity
“Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence.” [Emphasis is on a conceptual understanding of the role each line of evidence has relating to common ancestry and biological evolution. Examples of evidence could include similarities in DNA sequences, anatomical structures, and order of appearance of structures in embryological development.] - HS-LS4-2: Biological Evolution: Unity and Diversity
“Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.” [Emphasis is on using evidence to explain the influence each of the four factors has on number of organisms, behaviors, morphology, or physiology in terms of ability to compete for limited resources and subsequent survival of individuals and adaptation of species. Examples of evidence could include mathematical models such as simple distribution graphs and proportional reasoning.] [Assessment Boundary: Assessment does not include other mechanisms of evolution, such as genetic drift, gene flow through migration, and co-evolution.] - HS-LS4-3: Biological Evolution: Unity and Diversity
“Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.” [Emphasis is on analyzing shifts in numerical distribution of traits and using these shifts as evidence to support explanations.] [Assessment Boundary: Assessment is limited to basic statistical and graphical analysis. Assessment does not include allele frequency calculations.] - HS-LS4-4: Biological Evolution: Unity and Diversity
“Construct an explanation based on evidence for how natural selection leads to adaptation of populations.” [Emphasis is on using data to provide evidence for how specific biotic and abiotic differences in ecosystems (such as ranges of seasonal temperature, long-term climate change, acidity, light, geographic barriers, or evolution of other organisms) contribute to a change in gene frequency over time, leading to adaptation of populations.] - HS-LS4-5: Biological Evolution: Unity and Diversity
“Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases in the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.” [Emphasis is on determining cause and effect relationships for how changes to the environment such as deforestation, fishing, application of fertilizers, drought, flood, and the rate of change of the environment affect distribution or disappearance of traits in species.] - HS-LS4-6: Biological Evolution: Unity and Diversity
“Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.” [Emphasis is on testing solutions for a proposed problem related to threatened or endangered species, or to genetic variation of organisms for multiple species.]
Middle School Life Science
- MS-LS1-1: From Molecules to Organisms: Structures and Processes
“Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.” [Emphasis is on developing evidence that living things are made of cells, distinguishing between living and non-living things, and understanding that living things may be made of one cell or many and varied cells.] - MS-LS1-2: From Molecules to Organisms: Structures and Processes
“Develop and use a model to describe the function of a cell as a whole and ways the parts of cells contribute to the function.” [Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall.] [Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts.] - MS-LS1-3: From Molecules to Organisms: Structures and Processes
“Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.” [Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.] [Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.] - MS-LS1-4: From Molecules to Organisms: Structures and Processes
“Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.” [Examples of behaviors that affect the probability of animal reproduction could include nest building to protect young from cold, herding of animals to protect young from predators, and vocalization of animals and colorful plumage to attract mates for breeding. Examples of animal behaviors that affect the probability of plant reproduction could include transferring pollen or seeds, and creating conditions for seed germination and growth. Examples of plant structures could include bright flowers attracting butterflies that transfer pollen, flower nectar and odors that attract insects that transfer pollen, and hard shells on nuts that squirrels bury.] - MS-LS1-5: From Molecules to Organisms: Structures and Processes
“Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.” [Examples of local environmental conditions could include availability of food, light, space, and water. Examples of genetic factors could include large breed cattle and species of grass affecting growth of organisms. Examples of evidence could include drought decreasing plant growth, fertilizer increasing plant growth, different varieties of plant seeds growing at different rates in different conditions, and fish growing larger in large ponds than they do in small ponds.] [Assessment Boundary: Assessment does not include genetic mechanisms, gene regulation, or biochemical processes.] - MS-LS1-6: From Molecules to Organisms: Structures and Processes
“Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.” [Emphasis is on tracing movement of matter and flow of energy.] [Assessment Boundary: Assessment does not include the biochemical mechanisms of photosynthesis.] - MS-LS1-7: From Molecules to Organisms: Structures and Processes
“Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.” [Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.] [Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.] - MS-LS1-8: From Molecules to Organisms: Structures and Processes
“Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.” [Assessment Boundary: Assessment does not include mechanisms for the transmission of this information.] - “Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.” [Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.]
- MS-LS2-2: Ecosystems: Interactions, Energy, and Dynamics
“Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.” [Emphasis is on predicting consistent patterns of interactions in different ecosystems in terms of the relationships among and between organisms and abiotic components of ecosystems. Examples of types of interactions could include competitive, predatory, and mutually beneficial.] - MS-LS2-3: Ecosystems: Interactions, Energy, and Dynamics
“Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.” [Emphasis is on describing the conservation of matter and flow of energy into and out of various ecosystems, and on defining the boundaries of the system.] [Assessment Boundary: Assessment does not include the use of chemical reactions to describe the processes.]- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Matter Cycling and Energy Flow in Ecosystems
- The Great Oxygenation Event
- If We Are What We Eat, Americans Are Corn and Soy
- Reconstructing Ancient Diets with Isotopes
- Biosphere 2
- Attack Of The Killer Fungi
- 12 Years in a Sealed Ecosphere
- Farming Fish with Vegetables
- Vegetable Oil as Fuel
- Algae Fuel and Food
- MS-LS2-4: Ecosystems: Interactions, Energy, and Dynamics
“Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.” [Emphasis is on recognizing patterns in data and making warranted inferences about changes in populations, and on evaluating empirical evidence supporting arguments about changes to ecosystems.]- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Ecosystem Interactions and Dynamics
- The Great Oxygenation Event
- Biosphere 2
- Attack Of The Killer Fungi
- MS-LS2-5: Ecosystems: Interactions, Energy, and Dynamics
“Evaluate competing design solutions for maintaining biodiversity and ecosystem services.” [Examples of ecosystem services could include water purification, nutrient recycling, and prevention of soil erosion. Examples of design solution constraints could include scientific, economic, and social considerations.] - MS-LS3-1: Heredity: Inheritance and Variation of Traits
“Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.” [Emphasis is on conceptual understanding that changes in genetic material may result in making different proteins.] [Assessment Boundary: Assessment does not include specific changes at the molecular level, mechanisms for protein synthesis, or specific types of mutations.] - MS-LS3-2: Heredity: Inheritance and Variation of Traits
“Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.” [Emphasis is on using models such as Punnett squares, diagrams, and simulations to describe the cause and effect relationship of gene transmission from parent(s) to offspring and resulting genetic variation.] - MS-LS4-1: Biological Evolution: Unity and Diversity
“Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.” [Emphasis is on finding patterns of changes in the level of complexity of anatomical structures in organisms and the chronological order of fossil appearance in the rock layers.] [Assessment Boundary: Assessment does not include the names of individual species or geological eras in the fossil record.] - MS-LS4-2: Biological Evolution: Unity and Diversity
“Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.” [Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.] - MS-LS4-3: Biological Evolution: Unity and Diversity
“Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.” [Emphasis is on inferring general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.] [Assessment Boundary: Assessment of comparisons is limited to gross appearance of anatomical structures in embryological development.] - MS-LS4-4: Biological Evolution: Unity and Diversity
“Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.” [Emphasis is on using simple probability statements and proportional reasoning to construct explanations.] - Natural Selection
- Galapagos Finch Evolution
- Why Do Humans Have Different Colored Skin?
- A Peacock’s Tail
- MS-LS4-5: Biological Evolution: Unity and Diversity
“Gather and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms.” [Emphasis is on synthesizing information from reliable sources about the influence of humans on genetic outcomes in artificial selection (such as genetic modification, animal husbandry, gene therapy); and, on the impacts these technologies have on society as well as the technologies leading to these scientific discoveries.] - Artificial Selection
- The Potential And Ethics Of CRISPR
- MS-LS4-6: Biological Evolution: Unity and Diversity
“Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.” [Emphasis is on using mathematical models, probability statements, and proportional reasoning to support explanations of trends in changes to populations over time.] [Assessment Boundary: Assessment does not include Hardy Weinberg calculations.]
High School Physical Science
- HS-PS1-1: Matter and its Interactions
“Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.” [Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen.] [Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends.] - HS-PS1-2: Matter and its Interactions
“Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.” [Examples of chemical reactions could include the reaction of sodium and chlorine, of carbon and oxygen, or of carbon and hydrogen.] [Assessment Boundary: Assessment is limited to chemical reactions involving main group elements and combustion reactions.] - HS-PS1-3: Matter and its Interactions
“Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical forces between particles.” [Emphasis is on understanding the strengths of forces between particles, not on naming specific intermolecular forces (such as dipole-dipole). Examples of particles could include ions, atoms, molecules, and networked materials (such as graphite). Examples of bulk properties of substances could include the melting point and boiling point, vapor pressure, and surface tension.] [Assessment Boundary: Assessment does not include Raoult’s law calculations of vapor pressure.] - HS-PS1-4: Matter and its Interactions
“Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.” [Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.] [Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.] - HS-PS1-5: Matter and its Interactions
“Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.” [Emphasis is on student reasoning that focuses on the number and energy of collisions between molecules.] [Assessment Boundary: Assessment is limited to simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.] - HS-PS1-6: Matter and its Interactions
“Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.” [Emphasis is on the application of Le Chatelier’s Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.] [Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.] - HS-PS1-7: Matter and its Interactions
“Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.” [Emphasis is on using mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the macroscopic scale. Emphasis is on assessing students’ use of mathematical thinking and not on memorization and rote application of problem-solving techniques.] [Assessment Boundary: Assessment does not include complex chemical reactions.] - HS-PS1-8: Matter and its Interactions
“Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay.” [Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations.] [Assessment Boundary: Assessment does not include quantitative calculation of energy released. Assessment is limited to alpha, beta, and gamma radioactive decays.] - HS-PS2-1: Motion and Stability: Forces and Interactions
“Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.” [Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object sliding down a ramp, or a moving object being pulled by a constant force.] [Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.] - HS-PS2-2: Motion and Stability: Forces and Interactions
“Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.” [Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.] - HS-PS2-3: Motion and Stability: Forces and Interactions
“Apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.” [Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.] - HS-PS2-4: Motion and Stability: Forces and Interactions
“Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects.” [Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields.] [Assessment Boundary: Assessment is limited to systems with two objects.] - HS-PS2-5: Motion and Stability: Forces and Interactions
“Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.“ [Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.] - HS-PS2-6: Motion and Stability: Forces and Interactions
“Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.” [Emphasis is on the attractive and repulsive forces that determine the functioning of the material. Examples could include why electrically conductive materials are often made of metal, flexible but durable materials are made up of long chained molecules, and pharmaceuticals are designed to interact with specific receptors.] [Assessment Boundary: Assessment is limited to provided molecular structures of specific designed materials.] - HS-PS3-1: Energy
“Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known.” [Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.] - HS-PS3-2: Energy
“Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motion of particles (objects) and energy associated with the relative positions of particles (objects).” [Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.] - HS-PS3-3: Energy
“Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.” [Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.] [Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.] - HS-PS3-4: Energy
“Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).” [Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.] [Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.] - HS-PS3-5: Energy
“Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.” [Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.] [Assessment Boundary: Assessment is limited to systems containing two objects.] - HS-PS4-1:Waves and their Applications in Technologies for Information Transfer
“Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.” [Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.] - HS-PS4-2: Waves and their Applications in Technologies for Information Transfer
“Evaluate questions about the advantages of using digital transmission and storage of information.” [Examples of advantages could include that digital information is stable because it can be stored reliably in computer memory, transferred easily, and copied and shared rapidly. Disadvantages could include issues of easy deletion, security, and theft.] - HS-PS4-3: Waves and their Applications in Technologies for Information Transfer
“Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.” [Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.] [Assessment Boundary: Assessment does not include using quantum theory.] - HS-PS4-4: Waves and their Applications in Technologies for Information Transfer
“Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.” [Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.] [Assessment Boundary: Assessment is limited to qualitative descriptions.] - HS-PS4-5: Waves and their Applications in Technologies for Information Transfer
“Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.” [Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments are limited to qualitative information. Assessments do not include band theory.]
Middle School Physical Science
- MS-PS1-1: Matter and its Interactions
“Develop models to describe the atomic composition of simple molecules and extended structures.“ [Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms.] [Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required.]
- Atomic Composition Model
- Precious Plastic: plans for devices that recycle plastic
- The Collapsing Train Car
- Milk and Soap Experiment
- Atomic Composition Model
- MS-PS1-2: Matter and its Interactions
“Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.” [Examples of reactions could include burning sugar or steel wool, fat reacting with sodium hydroxide, and mixing zinc with hydrogen chloride.] [Assessment boundary: Assessment is limited to analysis of the following properties: density, melting point, boiling point, solubility, flammability, and odor.] - MS-PS1-3: Matter and its Interactions
“Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.” [Emphasis is on natural resources that undergo a chemical process to form the synthetic material. Examples of new materials could include new medicine, foods, and alternative fuels.] [Assessment Boundary: Assessment is limited to qualitative information.] - MS-PS1-4: Matter and its Interactions
“Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.” [Emphasis is on qualitative molecular-level models of solids, liquids, and gases to show that adding or removing thermal energy increases or decreases kinetic energy of the particles until a change of state occurs. Examples of models could include drawing and diagrams. Examples of particles could include molecules or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium.] - MS-PS1-5: Matter and its Interactions
“Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.” [Emphasis is on law of conservation of matter and on physical models or drawings, including digital forms, that represent atoms.] [Assessment Boundary: Assessment does not include the use of atomic masses, balancing symbolic equations, or intermolecular forces.] - MS-PS1-6: Matter and its Interactions
“Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.” [Emphasis is on the design, controlling the transfer of energy to the environment, and modification of a device using factors such as type and concentration of a substance. Examples of designs could involve chemical reactions such as dissolving ammonium chloride or calcium chloride.] [Assessment Boundary: Assessment is limited to the criteria of amount, time, and temperature of substance in testing the device.] - MS-PS2-1: Motion and Stability: Forces and Interactions
“Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.” [Examples of practical problems could include the impact of collisions between two cars, between a car and stationary objects, and between a meteor and a space vehicle.] [Assessment Boundary: Assessment is limited to vertical or horizontal interactions in one dimension.] - MS-PS2-2: Motion and Stability: Forces and Interactions
“Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.” [Emphasis is on balanced (Newton’s First Law) and unbalanced forces in a system, qualitative comparisons of forces, mass and changes in motion (Newton’s Second Law), frame of reference, and specification of units.] [Assessment Boundary: Assessment is limited to forces and changes in motion in one-dimension in an inertial reference frame and to change in one variable at a time. Assessment does not include the use of trigonometry.] - MS-PS2-3: Motion and Stability: Forces and Interactions
“Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.” [Examples of devices that use electric and magnetic forces could include electromagnets, electric motors, or generators. Examples of data could include the effect of the number of turns of wire on the strength of an electromagnet, or the effect of increasing the number or strength of magnets on the speed of an electric motor.] [Assessment Boundary: Assessment about questions that require quantitative answers is limited to proportional reasoning and algebraic thinking.] - MS-PS2-4: Motion and Stability: Forces and Interactions
“Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.” [Examples of evidence for arguments could include data generated from simulations or digital tools; and charts displaying mass, strength of interaction, distance from the Sun, and orbital periods of objects within the solar system.] [Assessment Boundary: Assessment does not include Newton’s Law of Gravitation or Kepler’s Laws.] - MS-PS2-5: Motion and Stability: Forces and Interactions
“Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.” [Examples of this phenomenon could include the interactions of magnets, electrically-charged strips of tape, and electrically-charged pith balls. Examples of investigations could include first-hand experiences or simulations.] [Assessment Boundary: Assessment is limited to electric and magnetic fields, and limited to qualitative evidence for the existence of fields.] - MS-PS3-1: Energy
“Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.” [Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball.] - MS-PS3-2: Energy
“Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.” [Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate’s hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.] [Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.] - MS-PS3-3: Energy
“Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.” [Examples of devices could include an insulated box, a solar cooker, and a Styrofoam cup.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.] - MS-PS3-4: Energy
“Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.” [Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.] [Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.] - MS-PS3-5: Energy
“Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.” [Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.] [Assessment Boundary: Assessment does not include calculations of energy.] - MS-PS4-1: Waves and their Applications in Technologies for Information Transfer
“Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.” [Emphasis is on describing waves with both qualitative and quantitative thinking.] [Assessment Boundary: Assessment does not include electromagnetic waves and is limited to standard repeating waves.] - MS-PS4-2: Waves and their Applications in Technologies for Information Transfer
“Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.” [Emphasis is on both light and mechanical waves. Examples of models could include drawings, simulations, and written descriptions.] [Assessment Boundary: Assessment is limited to qualitative applications pertaining to light and mechanical waves.] - MS-PS4-3: Waves and heir Applications in Technologies for Information Transfer
“Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.” [Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.] [Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.]
Engaging Phenomena for Elementary Science: Grades K-5
Grade 5 Science
- 5-LS1-1: From Molecules to Organisms: Structures and Processes
“Support an argument that plants get the materials they need for growth chiefly from air and water.” [Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.] - 5-LS2-1: Ecosystems: Interactions, Energy, and Dynamics
“Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.” [Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary for grade 5: Assessment does not include molecular explanations.]- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Environmental Matter Cycling
- Farming Fish with Vegetables
- Attack Of The Killer Fungi
- Biosphere 2
- 12 Years in a Sealed Ecosphere
- Ecosphere Sealed for Over 50 Years
- 5-ESS1-1: Earth’s Place in the Universe
“Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from the Earth.” [Assessment Boundary for grade 5: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).] - 5-ESS1-2: Earth’s Place in the Universe
“Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.” [Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary for grade 5: Assessment does not include causes of seasons.] - 5-ESS2-1: Earth’s Systems
“Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.” [Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary for grade 5: Assessment is limited to the interactions of two systems at a time.]- Earth Sphere Interactions
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Epic Mudslide Caught on Camera
- Why Do Rivers Curve?
- Augmented Reality Sandbox
- How Was The Grand Canyon Formed?
- Earth Sphere Interactions
- 5-ESS2-2: Earth’s Systems
“Describe and graph the amounts of salt water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.” [Assessment Boundary for grade 5: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.] - 5-ESS3-1: Earth and Human Activity
“Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.” - “Develop a model to describe that matter is made of particles too small to be seen.” [Examples of evidence supporting a model could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary for grade 5: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]
- 5-PS1-2: Matter and Its Interactions
“Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.” [Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary for grade 5: Assessment does not include distinguishing mass and weight.] - 5-PS1-3: Matter and Its Interactions
“Make observations and measurements to identify materials based on their properties.” [Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary for grade 5: Assessment does not include density or distinguishing mass and weight.] - 5-PS1-4: Matter and Its Interactions
“Conduct an investigation to determine whether the mixing of two or more substances results in new substances.” - 5-PS2-1: Motion and Stability: Forces and Interactions
“Support an argument that the gravitational force exerted by Earth on objects is directed down.” [“Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary for grade 5: Assessment does not include mathematical representation of gravitational force.] - 5-PS3-1: Energy
“Use models to describe that energy in animals’ food (used for body repair, growth, and motion and to maintain body warmth) was once energy from the sun.” [Examples of models could include diagrams, and flow charts.]
Grade 4 Science
- 4-LS1-1: From Molecules to Organisms: Structures and Processes
“Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.” [Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary for grade 4: Assessment is limited to macroscopic structures within plant and animal systems.]- Internal and External Structures
- Polar Bears are Actually Black
- Desert Beetle Harvests Water
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Internal and External Structures
- 4-LS1-2: From Molecules to Organisms: Structures and Processes
“Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.” [Emphasis is on systems of information transfer.] [Assessment Boundary for grade 4: Assessment does not include the mechanisms by which the brain stores and recalls information or the mechanisms of how sensory receptors function.] - 4-ESS1-1: Earth’s Place in the Universe
“Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.” [Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary for grade 4: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.] - 4-ESS2-1: Earth’s Systems
“Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.” [Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary for grade 4: Assessment is limited to a single form of weathering or erosion.] - 4-ESS2-2: Earth’s Systems
“Analyze and interpret data from maps to describe patterns of Earth’s features.” [Maps can include topographic maps of Earth’s land and ocean floor, as well as maps of the locations of mountains, continental boundaries, volcanoes, and earthquakes.] - 4-ESS3-1: Earth and Human Activity
“Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.” [Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.] - 4-ESS3-2: Earth and Human Activity
“Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.” [Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary for grade 4: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.] - 4-PS3-1: Energy
“Use evidence to construct an explanation relating the speed of an object to the energy of that object.“ [Assessment Boundary for grade 4: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.] - 4-PS3-2: Energy
“Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.” [Assessment Boundary for grade 4: Assessment does not include quantitative measurements of energy.] - 4-PS3-3: Energy
“Ask questions and predict outcomes about the changes in energy that occur when objects collide.” [Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary for grade 4: Assessment does not include quantitative measurements of energy.] - 4-PS3-4: Energy
“Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.” [Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary for grade 4: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.] - 4-PS4-1: Waves and Their Applications in Technologies for Information Transfer
“Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.” [Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary for grade 4: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.] - 4-PS4-2: Waves and Their Applications in Technologies for Information Transfer
“Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.” [Assessment Boundary for grade 4: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.] - 4-PS4-3: Waves and Their Applications in Technologies for Information Transfer
“Generate and compare multiple solutions that use patterns to transfer information.” [Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]
Grade 3
- 3-LS1-1: From Molecules to Organisms: Structures and Processes
“Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.” [Changes organisms go through during their life form a pattern.] [Assessment Boundary for grade 3: Assessment of plant life cycles is limited to those of flowering plants. Assessment does not include details of human reproduction.]- Plant and Animal Life Cycles
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Plant and Animal Life Cycles
- 3-LS2-1: Ecosystems: Interactions, Energy, and Dynamics
“Construct an argument that some animals form groups that help members survive.” - 3-LS3-1: Heredity: Inheritance and Variation of Traits
“Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.” [Patterns are the similarities and differences in traits shared between offspring and their parents, or among siblings. Emphasis is on organisms other than humans.] [Assessment Boundary for grade 3: Assessment does not include genetic mechanisms of inheritance and prediction of traits. Assessment is limited to non-human examples.] - 3-LS3-2: Heredity: Inheritance and Variation of Traits
“Use evidence to support the explanation that traits can be influenced by the environment.” [Examples of the environment affecting a trait could include normally tall plants grown with insufficient water are stunted; and, a pet dog that is given too much food and little exercise may become overweight.] - 3-LS4-1: Biological Evolution: Unity and Diversity
“Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.“ [Examples of data could include type, size, and distributions of fossil organisms. Examples of fossils and environments could include marine fossils found on dry land, tropical plant fossils found in Arctic areas, and fossils of extinct organisms.] [Assessment Boundary for grade 3: Assessment does not include identification of specific fossils or present plants and animals. Assessment is limited to major fossil types and relative ages.] - 3-LS4-2: Biological Evolution: Unity and Diversity
“Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.” [Examples of cause and effect relationships could be plants that have larger thorns than other plants may be less likely to be eaten by predators; and, animals that have better camouflage coloration than other animals may be more likely to survive and therefore more likely to leave offspring.] - 3-LS4-3: Biological Evolution: Unity and Diversity
“Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.” [Examples of evidence could include needs and characteristics of the organisms and habitats involved. The organisms and their habitat make up a system in which the parts depend on each other.]- Habitats and Organism Survival
- Pika Models + Climate Change (BAESI lesson that integrates biology and ecology with Earth science)
- Habitats and Organism Survival
- 3-LS4-4: Biological Evolution: Unity and Diversity
“Make a claim about the merit of a solution to a problem caused when the environment changes and the types of plants and animals that live there may change.” [Examples of environmental changes could include changes in land characteristics, water distribution, temperature, food, and other organisms.] [Assessment Boundary for grade 3: Assessment is limited to a single environmental change. Assessment does not include the greenhouse effect or climate change.] - 3-ESS2-1: Earth’s Systems
“Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.” [Examples of data could include average temperature, precipitation, and wind direction.] [Assessment Boundary for grade 3: Assessment of graphical displays is limited to pictographs and bar graphs. Assessment does not include climate change.] - 3-ESS2-2: Earth’s Systems
“Obtain and combine information to describe climates in different regions of the world.” - 3-ESS3-1: Earth and Human Activity
“Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.” [Examples of design solutions to weather-related hazards could include barriers to prevent flooding, wind resistant roofs, and lightning rods.] - 3-PS2-1: Motion and Stability: Forces and Interactions
“Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.” [Examples could include an unbalanced force on one side of a ball can make it start moving; and, balanced forces pushing on a box from both sides will not produce any motion at all.] [Assessment Boundary for grade 3: Assessment is limited to one variable at a time: number, size, or direction of forces. Assessment does not include quantitative force size, only qualitative and relative. Assessment is limited to gravity being addressed as a force that pulls objects down.] - 3-PS2-2: Motion and Stability: Forces and Interactions
“Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.” [Examples of motion with a predictable pattern could include a child swinging in a swing, a ball rolling back and forth in a bowl, and two children on a see-saw.] [Assessment Boundary for grade 3: Assessment does not include technical terms such as period and frequency.] - 3-PS2-3: Motion and Stability: Forces and Interactions
“Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.” [Examples of an electric force could include the force on hair from an electrically charged balloon and the electrical forces between a charged rod and pieces of paper; examples of a magnetic force could include the force between two permanent magnets, the force between an electromagnet and steel paperclips, and the force exerted by one magnet versus the force exerted by two magnets. Examples of cause and effect relationships could include how the distance between objects affects strength of the force and how the orientation of magnets affects the direction of the magnetic force.] [Assessment Boundary for grade 3: Assessment is limited to forces produced by objects that can be manipulated by students, and electrical interactions are limited to static electricity.] - 3-PS2-4: Motion and Stability: Forces and Interactions
“Define a simple design problem that can be solved by applying scientific ideas about magnets.” [Examples of problems could include constructing a latch to keep a door shut and creating a device to keep two moving objects from touching each other.]
Grade 2
- 2-LS2-1: Ecosystems: Interactions, Energy, and Dynamics
“Plan and conduct an investigation to determine if plants need sunlight and water to grow.” [Assessment Boundary for grade 2: Assessment is limited to testing one variable at a time.]- Environmental Plant Needs (links to multiple phenomena / additional info on meeting PE)
- Farming Fish with Vegetables
- 12 Years in a Sealed Ecosphere
- 2-LS2-2: Ecosystems: Interactions, Energy, and Dynamics
“Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.” - 2-LS4-1: Biological Evolution: Unity and Diversity
“Make observations of plants and animals to compare the diversity of life in different habitats.” [Emphasis is on the diversity of living things in each of a variety of different habitats.] [Assessment Boundary for grade 2: Assessment does not include specific animal and plant names in specific habitats.]- Habitats and Biodiversity (links to multiple phenomena / additional info on meeting PE)
- Exploring Microhabitats
- Air Plants – No Soil Needed
- 2-ESS1-1: Earth’s Place in the Universe
“Use information from several sources to provide evidence that Earth events can occur quickly or slowly.” [Examples of events and timescales could include volcanic explosions and earthquakes, which happen quickly and erosion of rocks, which occurs slowly.] [Assessment Boundary for grade 2: Assessment does not include quantitative measurements of timescales.] - 2-ESS2-1: Earth’s Systems
“Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.” [Examples of solutions could include different designs of dikes and windbreaks to hold back wind and water, and different designs for using shrubs, grass, and trees to hold back the land.] - 2-ESS2-2: Earth’s Systems
“Develop a model to represent the shapes and kinds of land and bodies of water in an area.” [Assessment Boundary for grade 2: Assessment does not include quantitative scaling in models.] - 2-ESS2-3: Earth’s Systems
“Obtain information to identify where water is found on Earth and that it can be solid or liquid.“
- 2-PS1-1: Matter and Its Interactions
“Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.“ [Observations could include color, texture, hardness, and flexibility. Patterns could include the similar properties that different materials share.]
- 2-PS1-2: Matter and Its Interactions
“Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.” [Examples of properties could include, strength, flexibility, hardness, texture, and absorbency.] [Assessment Boundary for grade 2: Assessment of quantitative measurements is limited to length.] - 2-PS1-3: Matter and Its Interactions
“Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.” [Examples of pieces could include blocks, building bricks, or other assorted small objects.] - 2-PS1-4: Matter and Its Interactions
“Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.” [Examples of reversible changes could include materials such as water and butter at different temperatures. Examples of irreversible changes could include cooking an egg, freezing a plant leaf, and heating paper.]
Grade 1
- 1-LS1-1: From Molecules to Organisms: Structures and Processes
“Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.” [Examples of human problems that can be solved by mimicking plant or animal solutions could include designing clothing or equipment to protect bicyclists by mimicking turtle shells, acorn shells, and animal scales; stabilizing structures by mimicking animal tails and roots on plants; keeping out intruders by mimicking thorns on branches and animal quills; and, detecting intruders by mimicking eyes and ears.]- Biomimicry Design Solution (links to multiple phenomena / additional info on meeting PE)
- Biomimicry
- Crown Shyness
- Desert Beetle Harvests Water
- Gecko Feet
- Polar Bears are Actually Black
- Biomimicry Design Solution (links to multiple phenomena / additional info on meeting PE)
- 1-LS1-2: From Molecules to Organisms: Structures and Processes
“Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.” [Examples of patterns of behaviors could include the signals that offspring make (such as crying, cheeping, and other vocalizations) and the responses of the parents (such as feeding, comforting, and protecting the offspring).]- Behavior – Parents and Offspring (links to multiple phenomena / additional info on meeting PE)
- Male Water Bug with Eggs
- Mouthbrooding Fish
- Shrew Caravan
- Behavior – Parents and Offspring (links to multiple phenomena / additional info on meeting PE)
- 1-LS3-1: Heredity: Inheritance and Variation of Traits
“Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.” [Examples of patterns could include features plants or animals share. Examples of observations could include leaves from the same kind of plant are the same shape but can differ in size; and, a particular breed of dog looks like its parents but is not exactly the same.] [Assessment Boundary for grade 1: Assessment does not include inheritance or animals that undergo metamorphosis or hybrids.]- Plant and Animal Structures – Parents and Offspring (links to multiple phenomena / additional info on meeting PE)
- Corn Cob Sprouting in Water
- Cute Baby Animals
- Hemingway’s Polydactyl Cats
- Plant and Animal Structures – Parents and Offspring (links to multiple phenomena / additional info on meeting PE)
- 1-ESS1-1: Earth’s Place in the Universe
“Make observations at different times of year to relate the amount of daylight to the time of year.” [Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary for grade 1: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]- Sun, Moon, and Star Patterns (links to multiple phenomena / additional info on meeting PE)
- Dubai 24-Hour Timelapse
- Total Solar Eclipse
- Star Trails
- Seeing the Moon During the Day
- 1-ESS1-2: Earth’s Place in the Universe
“Make observations at different times of year to relate the amount of daylight to the time of year.“ [Emphasis is on relative comparisons of the amount of daylight in the winter to the amount in the spring or fall.] [Assessment Boundary for grade 1: Assessment is limited to relative amounts of daylight, not quantifying the hours or time of daylight.]- Seasonal Sunlight (links to multiple phenomena / additional info on meeting PE)
- How Do Sundials Work?
- Pipehenge: Poor Man’s Stonehenge
- Seasonal Sunlight (links to multiple phenomena / additional info on meeting PE)
- 1-PS4-1: Waves and Their Applications in Technologies for Information Transfer
“Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.” [Examples of vibrating materials that make sound could include tuning forks and plucking a stretched string. Examples of how sound can make matter vibrate could include holding a piece of paper near a speaker making sound and holding an object near a vibrating tuning fork.]- Sound and Vibrating Materials (links to multiple phenomena / additional info on meeting PE)
- Daniel Kish Uses Echolocation to Navigate
- Ruben’s Tube
- Shatter a Wine Glass with Your Voice
- The Sound Carousel–video
- There Is No Sound in Space
- Tuning fork vibrates other tuning fork and ball
- The Visual Microphone: Passive Recovery of Sound from Video
- Sound and Vibrating Materials (links to multiple phenomena / additional info on meeting PE)
- 1-PS4-2: Waves and Their Applications in Technologies for Information Transfer
“Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated.” [Examples of observations could include those made in a completely dark room, a pinhole box, and a video of a cave explorer with a flashlight. Illumination could be from an external light source or by an object giving off its own light.]
- Illumination and Darkness (links to multiple phenomena / additional info on meeting PE)
- The Lion and the Mouse Shadow Puppet Show
- Illumination and Darkness (links to multiple phenomena / additional info on meeting PE)
- 1-PS4-3: Waves and Their Applications in Technologies for Information Transfer
“Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.” [Examples of materials could include those that are transparent (such as clear plastic), translucent (such as wax paper), opaque (such as cardboard), and reflective (such as a mirror).] [Assessment Boundary for grade 1: Assessment does not include the speed of light.]- Light and Materials (links to multiple phenomena / additional info on meeting PE)
- The Shadow Illusion
- Trichroic Prism
- Vantablack – The Darkest Material on Earth
- Why is Space Black?
- Light and Materials (links to multiple phenomena / additional info on meeting PE)
- 1-PS4-4: Waves and Their Applications in Technologies for Information Transfer
- Communication Device Design (links to multiple phenomena + more info on meeting PE)
- Tin Can Telephone
Kindergarten
- K-LS1-1: From Molecules to Organisms: Structures and Processes
“Use observations to describe patterns of what plants and animals (including humans) need to survive.” (Examples of patterns could include that animals need to take in food but plants do not; the different kinds of food needed by different types of animals; the requirement of plants to have light; and, that all living things need water.)- Plant and Animal Needs (links to multiple phenomena + additional info on meeting PE)
- 12 Years in a Sealed Ecosphere
- Alligators Survive in Ice
- Biosphere 2
- Corn Cob Sprouting in Water
- Desert Beetle Harvests Water
- Farming Fish with Vegetables
- Tree Crown Shyness
- Vertical Farms: video — “This Farm of the Future Uses No Soil and 95% Less Water”
- Plant and Animal Needs (links to multiple phenomena + additional info on meeting PE)
- K-ESS2-1: Earth’s Systems
“Use and share observations of local weather conditions to describe patterns over time.” (Examples of qualitative observations could include descriptions of the weather (such as sunny, cloudy, rainy, and warm); examples of quantitative observations could include numbers of sunny, windy, and rainy days in a month. Examples of patterns could include that it is usually cooler in the morning than in the afternoon and the number of sunny days versus cloudy days in different months.) [Assessment Boundary for K: Assessment of quantitative observations limited to whole numbers and relative measures such as warmer/cooler.]
- Weather Patterns (links to multiple phenomena + more info on meeting PE)
- Cloud in a Jar Experiment
- Solar Ovens
- Weather Folklore
- Why Does the Wind Blow?
- World Climographs
- Weather Patterns (links to multiple phenomena + more info on meeting PE)
- K-ESS2-2: Earth’s Systems
“Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.” [Examples of plants and animals changing their environment could include a squirrel digs in the ground to hide its food and tree roots can break concrete.]- Environmental Change (links to multiple phenomena / more info on meeting PE)
- Biological Weathering
- Woodpecker Homes
- Environmental Change (links to multiple phenomena / more info on meeting PE)
- K-ESS3-1: Earth and Human Activity
“Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live.” [Examples of relationships could include that deer eat buds and leaves, therefore, they usually live in forested areas; and, grasses need sunlight so they often grow in meadows. Plants, animals, and their surroundings make up a system.]
- Environmental Relationships (links to multiple phenomena / more info on meeting PE)
- Dolphins and Humans Fishing Together
- Exploring Microhabitats
- Virtual Field Trips
- Why Do Sunflowers Follow the Sun?
- Environmental Relationships (links to multiple phenomena / more info on meeting PE)
- K-ESS3-2: Earth and Human Activity
“Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.” [Emphasis is on local forms of severe weather.]- Forecasting Severe Weather (links to multiple phenomena / more info on meeting PE)
- Lightning Strikes Thrice – Empire State Building
- Timelapse of a Blizzard
- Windcatchers
- Forecasting Severe Weather (links to multiple phenomena / more info on meeting PE)
- K-ESS3-3: Earth and Human Activity
“Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.” [Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles.]- Environmental Solutions (links to more info on meeting PE)
- Google Maps Timelapse
- Precious Plastic: recycling and Ecobricks
- Environmental Solutions (links to more info on meeting PE)
- K-PS2-1: Motion and Stability: Forces and Interactions
“Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.” [Examples of pushes or pulls could include a string attached to an object being pulled, a person pushing an object, a person stopping a rolling ball, and two objects colliding and pushing on each other.] [Assessment Boundary for K: Assessment is limited to different relative strengths or different directions, but not both at the same time. Assessment does not include non-contact pushes or pulls such as those produced by magnets.]- Pushes, Pulls, and Motion (links to multiple phenomena + more info on meeting PE)
- A Bed of Nails
- Giant Newton’s Cradle
- The Ollie – Skateboarding Slow Motion
- Slow Motion Golf Ball Collision
- Top Spinning for Over 50 Minutes
- The Walking Table
- Pushes, Pulls, and Motion (links to multiple phenomena + more info on meeting PE)
- K-PS2-2: Motion and Stability: Forces and Interactions
“Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.” [Examples of problems requiring a solution could include having a marble or other object move a certain distance, follow a particular path, and knock down other objects. Examples of solutions could include tools such as a ramp to increase the speed of the object and a structure that would cause an object such as a marble or ball to turn.] [Assessment Boundary for K: Assessment does not include friction as a mechanism for change in speed.]- Motion Design Solution (links to multiple phenomena / more info on meeting PE)
- Amazing Rube Goldberg Machines
- Amazing Slinky Tricks
- Caine’s Arcade
- GoldieBlox & Rube Goldberg “Princess Machine”–video
- Perplexus Epic 1-125 Demonstration
- Motion Design Solution (links to multiple phenomena / more info on meeting PE)
- K-PS3-1: Energy
“Make observations to determine the effect of sunlight on Earth’s surface.” [Examples of Earth’s surface could include sand, soil, rocks, and water.] [Assessment Boundary for K: Assessment of temperature is limited to relative measures such as warmer/cooler.]- Sunlight Warms the Earth (links to multiple phenomena / more info on meeting PE)
- Homemade Thermometer
- How the Sun Sees You
- Snowman Melt Timelapse
- Sunlight Warms the Earth (links to multiple phenomena / more info on meeting PE)
- K-PS3-2: Energy
“Use tools and materials provided to design and build a device that will reduce the warming effect of sunlight on Earth’s surface.” [Examples of structures could include umbrellas, canopies, and tents that minimize the warming effect of the sun.]- Shade Structure Design (links to more info on meeting PE)
- Windcatchers